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This paper focuses on the effects of an opening placed along a tube on the propagation
of a pressure wavefront. Such a configuration has been chosen for its relevance to
many of the countermeasures envisaged in reducing strong pressure transients in
tunnels due to the entry of high-speed trains (this installation includes a perforated
entrance hood and ventilation shaft). We will start by establishing that when a
compression wavefront passes through an opening, the front is split into an infinite
number of smaller pressure steps, with their amplitude expressed as the terms of a
mathematical series. The main parameter of the series is a transmission coefficient
of the opening. The shape of each of the smaller pressure steps is driven by the
transmission–reflection process that takes place at the opening. Both experimental
and numerical studies have been carried out to carefully estimate both the transmission
coefficient and the shape of the transmitted and reflected pressure waves. Three major
parameters are identified: the relative surface area of the opening to the tube cross-
section, the ratio of the incident front length to the longitudinal opening length, and
the incident front amplitude.

It will be shown that the transmission coefficient decreases exponentially with the
relative surface area of the opening and is significantly influenced by the incident
front amplitude. Both the length and shape of the transmitted front are similar to
those of the incident front. The reflected front length, however, increases linearly with
the incident front length as well as with the longitudinal opening length. The shape of
the reflected front is greatly influenced by the incident front length. A linear analysis
has been conducted and shows that the transmission coefficient can be predicted in a
straightforward manner. These results are deemed to be of help not only in the design
of countermeasures for the train/tunnel entry problem, but also for technological
applications involving transient pressure pulses in branched pipe flows (e.g. pulsed
flow in exhaust pipes).

1. Introduction
With the development of high-speed train networks, pressure waves in tunnels have

raised a number of problems, including ear discomfort for train passengers and sonic
booms generated at tunnel exits. These phenomena are closely correlated with strong
pressure gradients in the tunnel. Many solutions have been envisaged and tested in
order to reduce the pressure gradient in tunnels. The aim of these solutions is to
increase the pressure rise time in the tunnel and/or to allow for a partial discharge
of compressed air into the surrounding atmosphere or into an adjacent tube. The
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Figure 1. Schematic diagram of the experimental apparatus.

most common solutions consist of lengthening the train nose (Maeda et al. 1993;
Iida et al. 1996), adding a constant cross-section hood ahead of the main tunnel sec-
tion (Bellenoue Auvity & Kageyama 2001), adding a flared hood (Howe 1999) or a
perforated hood (Ozawa & Maeda 1988; Bellenoue & Kageyama 2002; Howe et al.
2003), and making use of side branches (Henson & Pope 1997). These last two
countermeasures involve the propagation of pressure waves within a perforated
tunnel.

In the case of a perforated hood, air directly discharges into the surrounding
atmosphere. An expansion wave is instantaneously formed in the hood, while the
primary compression wave has not yet been completely generated. Recent work
undertaken by Howe et al. (2003) yielded a description of the phenomena encountered
for this case; they gave an analytical prediction, which was satisfactorily validated
by experiments at the model scale. Their research however was restricted to openings
located close to the tunnel entrance. In the case of side branches, which tend to be
located far from the tunnel entrance, a travelling wave is generated in the branched
pipe and then returns to the main tunnel as an expansion wave with a time lag that
depends on the pipe length. This expansion wave perturbs the transmission–reflection
process taking place at the junction; however, a clear and complete description of the
transmission–reflection process occurring as a pressure wave passes an opening still
needs to be provided.

In this paper, the generic configuration of a fully formed pressure wave propagating
within a thin perforated tube will be examined. A complete description of the effects
of an opening on the compression wavefront, without being limited to the case where
the opening is close to the tube entrance, is proposed. The main parameters will be
clearly exposed and their individual effect closely assessed using both experimental
and numerical approaches. Lastly, a simple analytical development will be put forward
that enables a prediction of the pressure wave generated by entry of a slender body
into a tube in the presence of an opening.

2. Presentation of experimental apparatus and measurement techniques
2.1. Presentation of the compression wavefront generator

Compression wavefronts are produced by the entry of a slender body into a tube. The
experimental apparatus available at the L.C.D. facility (Bellenoue et al. 2001; Auvity,
Bellenoue & Kageyama 2001) has been used for this study. A diagram of the set-up
is displayed in figure 1.

The slender body is a circular cylinder 600 mm in length and 25 mm in diameter.
The body nose and tail geometries are fixed: the body nose Lnose =40 mm long with
an elliptical shape and the tail is flat. The tube length and diameter are Ltube = 4.4m
and Dtube = 44 mm (area Stube = 1520.5 mm2), respectively. The tube and moving body
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lengths are chosen so as to prevent the interaction of observed phenomena with both
the expansion wave resulting from compression wave reflection at the tunnel exit and
the expansion wave created by body tail entry into the tube.

The slender body is launched by means of an elastic-bundle catapult and then
guided onto a 0.8 mm diameter wire monorail. With this system a body can reach
a speed of 50 m s−1 (i.e. a Mach number equal to 0.15). The moving body speed is
measured for each run with a level of uncertainty of less than 2 % (Bellenoue et al.
2001).

The moving body/tube blockage ratio (body section area divided by tube section
area) is 0.32. This value has been chosen for the present study so that the maximum
compression wave amplitude reached for the maximum moving body speed is:
�pmax ≈ 1600 Pa. This value lies close to the maximum encountered on high-speed
train networks.

The tube diameter determines the magnitude of frictional effects during pressure
wavefront propagation. A competition is actually observed between nonlinear
steepening effects that occur naturally when a one-dimensional compression wavefront
propagates within a semi-infinite domain and smoothing effects due to friction on
the tube wall. Under the conditions discussed, no noticeable smoothing or steepening
effects have been observed for propagation distances on the order of 40 tube diameters.

A non-dimensional pressure Cp is used herein, as defined by

Cp =
p − p0

1
2
ρ0 V 2

body

(1)

where p0 and ρ0 are respectively the pressure and density under atmospheric cond-
itions and Vbody is the body speed.

A non-dimensional time scale ta may also be defined, as follows:

ta =
Vbodyt

Lref

. (2)

where Lref is a reference length set equal to the body nose length (i.e. Lref = Lnose =
40 mm). ta equals zero when the tip of the body nose is entering the tube.

A non-dimensional pressure gradient can then be defined as

Kgr =
dCp

dta
. (3)

Figure 2 presents typical compression waves generated for various body speeds
using the non-dimensional coordinate system (Cp, tashift). tashift is equivalent to the
non-dimensional time introduced above, except that an additional shift has been
included. This shift corresponds to the time taken by the compression wave to
propagate from the tube entrance to the microphone position, Xµphone 1:

tashift = ta − VbodyXµphone 1

c0Lref

=
Vbody

Lref

(
t − Xµphone 1

c0

)
. (4)

Using tashift, all compression wavefronts reach Xµphone 1 at the same non-dimensional
time. In the coordinate system shown in figure 2, the compression wavefronts are
similar as regards body speed. The maximum value of Cp, Cpmax, obtained at the
end of the front is almost unchanged over the investigated range of body speeds:
20–50 m s−1. This value is in agreement with the semi-empirical formulation derived
by Ozawa (1979).
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Figure 2. Compression waves generated by the apparatus in a non-dimensional coordinate
system (Cp, tashift).
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Figure 3. Compression waves generated by the apparatus within a spatial representation.

Figure 3 exhibits a spatial representation of the compression waves presented in
figure 2, as based on the time history measured at the transducer point. The x-axis
coordinate is a non-dimensional length, L/Dtube, deduced from the physical time
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according to the following simple relation:

L

Dtube

=
c0

Vbody

Lref

Dtube

tashift =
c0

Dtube

(
t − Xµphone 1

c0

)
. (5)

For faster moving bodies, the compression wavefront shortens in length. Given that
the non-dimensional duration of the fronts remains unchanged, the spatial extent of
the compression front is inversely proportional to the speed of the moving body.

In summary, the maximum amplitude of the compression wavefront increases with
the square of moving body speed, whereas the spatial length increases linearly. The
major drawback of this experimental set-up is that compression waves with different
amplitudes yet equal front lengths cannot be produced without changing the body
nose length and/or tube entrance geometry.

2.2. Pressure measurements

Compression waves have been measured using Bruel & Kjaer 1/4-in. piezoelectric
microphones (type 4136) in association with a conditioner amplifier (Nexus type
2690 0S4). The measurement range of the transducer is 1 p.s.i. (6900 Pa). For the
maximum pressure amplitude (1600 Pa), the cumulative relative precision error for
pressure measurements is less than 1 %. The sensitive surface of the microphone is
mounted flush with the inner tube surface. The frequency response of the pressure
transducer is 90 kHz at −2 dB. In order to capture transient phenomena with a typical
time of 100 µs, pressure signals have been sampled by means of a 12-bit oscilloscope
at a frequency of 200 kHz. No filter has been used in this procedure.

Pressure measurements are performed both upstream and downstream of the
opening (see figure 1). The distance between tube entrance and the first microphone
(Xµphone 1), the distance between Xµphone 1 and the beginning of the opening (Xop)
and the distance between the end of the opening (Xop + Lop) and the second
microphone (Xµphone 2) have all been set at greater than 10Dtube so as to ensure
the one-dimensionality of the measured pressure waves originating from the tube
entrance and/or the opening: Xµphone 1 = 13Dtube, Xop = 25Dtube and Xµphone 2 = 39Dtube.
Bellenoue, Moriniere & Kageyama (2002) proved that a distance of 4 tube diameters
was indeed sufficient to ensure the one-dimensionality of pressure wavefronts.

2.3. Opening geometry

A generic geometric configuration has been chosen for the opening, consisting of a slit
4.3 mm wide. Two types of slits with a length of either Lop = 0.5Dtube or Lop =0.2Dtube

have been used. A modification in the opening surface area is introduced by varying
the number of slits (from 1 to 4 at the same location) and/or by changing the type
of slit. When there is more than one slit, they are distributed equally around the
tube perimeter. Table 1 presents all configurations tested within the scope of these
experiments. The relative opening surface area, as a percentage of tube cross-section,
varies from 2.5 % to 26.4 %.

The tube thickness is 3 mm. The time required to travel twice this distance at
the speed of sound is approximately 18 µs; this time lag is not noticeable under
experimental conditions and the opening is then considered as being directly correlated
with atmospheric conditions. The opening length, Lop, is chosen to be small in
comparison with tube diameter. In the experiments, the compression wavefront length
is on the order of 10 tube diameters (see figure 3), and the opening length is no more
than half the tube diameter. The experimental study is limited to the case where the
pressure front length, Lfront, is much greater than the opening length, Lop. It proved
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Test case Number of openings Lop Sop/Stube

1 1 0.2Dtube 2.5 %
2 2 0.2Dtube 5.0 %
3 3 0.2Dtube 7.5 %
4 4 0.2Dtube 10.0 %
5 1 0.5Dtube 6.2 %
6 2 0.5Dtube 12.4 %
7 3 0.5Dtube 18.7 %
8 4 0.5Dtube 26.4 %

Table 1. Geometric opening configurations tested in the experiments.

impossible with the experimental apparatus to explore the range where Lop was of the
same order as Lfront. A very short compression wavefront of about one tube diameter
in length cannot be generated, even with the entry of a flat-nosed body into the
tube. The length of the compression wavefront generated with a flat-nosed body for
a body/tube blockage ratio of 0.32 and Vbody = 45.0 m s−1 is in fact on the order of
seven tube diameters (Auvity 1998).

3. Presentation of the basic phenomena
This section introduces the major relevant parameters and has been based on

experimental observations. Figure 4 presents an (x, t) diagram along with pressure
signals recorded at positions Xµphone 1 and Xµphone 2. This experiment has been
conducted under the conditions of Test case 6 and Vbody = 42.0 m s−1. The OC1h
and OC1e lines represent respectively the head and tail of compression wavefront
OC1 generated by the body nose entry into the tube. As compression front OC1 passes
through the opening, air discharge occurs, thereby creating an expansion wavefront
propagating back into the tube. This expansion wave, called OD1, may be seen on the
pressure signal at Xµphone 1 as the second (negative) pressure front. The air discharge
occurring as the compression wavefront propagates through the opening is such that
compression wavefront OC1, recorded at position Xµphone 2, displays an amplitude Cp1

smaller than Cp0.
Upon reaching the tube entrance, wavefront OD1 reflects back into the tube and

changes sign to become a compression wavefront, OC2. Front OC2 may be detected at
time 30 ms and at position Xµphone 1; this wavefront at position Xµphone 2 corresponds
to the second step in the pressure signal. Like wavefront OC1, the amplitude of
wavefront OC2, Cp2, is reduced after passing through the opening. An expansion
wavefront OD3 is then produced as wavefront OC2 passes through the opening.
Wavefront OD2 reflects back at the tube entrance just like wavefront OC3 and is
detected as the third step in the pressure signal at position Xµphone 2, with an amplitude
of Cp3.

Following the three positive pressure steps on the pressure signal at position
Xµphone 2, a pressure drop occurs that corresponds to both the passing of the expansion
wavefront due to the reflection of wavefront OC1 at the tube exit and the passing of
the expansion front generated by the moving body tail entry.

The effect of an opening placed along a tube on a compression wavefront is thus
clearly illustrated based on the present set of experiments. In the absence of an
opening, the initial compression wavefront generated by the body nose entry (first
step in the pressure signal at position Xµphone 1) propagates inside the tube and reflects
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Figure 4. (x, t) diagram and pressure signal at positions Xµphone 1 and Xµphone 2

along the tunnel.

several times at both the tube entrance and exit. Eventually, the front steepens during
propagation. Introducing an opening significantly modifies the transient pressure in
the tube and, in particular, evens out the pressure rise downstream of the opening,
i.e. increases the length of the compression wavefront. Under the conditions tested
herein, three reduced-compression fronts were clearly observed.

Based on the above description, the effect of an opening on a pressure wavefront
with an amplitude of Cpi, called the incident front, may be summarized as follows: an
opening generates an expansion wave that propagates both downstream and upstream
of the opening. Downstream of the opening, this expansion wave is superimposed
upon the initial compression wave, such that the resultant transmitted wavefront Cpt

has a reduced amplitude compared to the incident front Cpi. The reflected wave is
composed solely of the expansion wave created at the opening. The amplitude of the
reflected front will be denoted Cpr.

We will now define a transmission coefficient α for each opening as the ratio of the
transmitted front amplitude to the incident front amplitude, i.e.

α =
Cpt

Cpi

=
�pt

�pi

. (6)
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Figure 5. Pressure signal and associated pressure gradient at position Xµphone 1 for Test case

4 and Vbody = 40.0m s−1.

By comparing the absolute non-dimensional amplitude of these various wavefronts,
the following may be written:

Cpi = Cpt + Cpr or �pi = �pt + �pr. (7)

This then yields

�pr

�pi

=
Cpr

Cpi

= 1 − α. (8)

Figure 5 (respectively figure 6) presents the pressure signal and associated pressure
gradient measured at position Xµphone 1 (respectively Xµphone 2), as obtained from Test
case 4 (see § 2.3 for further details).

The definition of α then leads to the following expression:

Cpt1 = Cp1 = α Cp0 and Cpr1 = (1 − α) Cpo.

Consequently,

Cpt2 =Cp2 =α Cpr1 = α (1 − α) Cp0 and Cpr2 = (1 − α) Cpr1 = (1 − α)2 Cp0.

Hence:

Cpt3 = Cp3 =α Cpr2 = α (1 − α)2 Cp0.

In summary, if no pressure wave interferes with the process, the effect of an opening
on a pressure wavefront of amplitude Cp0 is to split the front into an infinite number
of smaller pressure steps, each with an amplitude of Cpi, i � 1 for which∑

i�1

Cpi = Cp0 (9)

and

Cpi =α(1 − α)(i−1)Cp0 for i � 1. (10)
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Test Cp2 Cp2 Cp3 Cp3

number Cp0 Cp1 (exp) (Eq. (10)) (exp.) (Eq. (10))

(
3∑

i=1

Cpi

)
exp

(
3∑

i=1

Cpi

)
Eq. (10)

4 1.08 0.54 0.25 0.27 0.10 0.13 0.90 0.94
6 1.08 0.46 0.27 0.26 0.11 0.15 0.84 0.87
7 1.05 0.28 0.24 0.20 0.14 0.15 0.66 0.63

Table 2. Experimental validation of equations (9) and (10).
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for Test case 4 and Vbody = 40.0m s−1.

With the present experiments, as mentioned above, a pressure drop due to tail train
entry occurs after the third step, such that pressure fronts for i > 3 cannot be seen
on figure 4. Equations (9) and (10) are validated by our experimental results. As
an example, using the test presented in figures 5 and 6, the experimental value of
Cpi, i � 2 and the value predicted with equation (10) can be compared (see table 2).
The value of α is then calculated using the values of Cp0 and Cp1.

Once the transmission coefficient and amplitude of the incident compression wave
are known, the amplitude of each small pressure step (Cp1, Cp2, Cp3, . . .) may be
estimated. Let us now focus on how the shape of a single pressure front gets distorted
when passing through an opening. Figure 7 presents an (x, t) diagram describing the
opening region; on this diagram, all pressure wavefronts are assumed to propagate at
the speed of sound. The incident compression wavefront has been represented by the
lines OCih and OCit, being the head and tail of the incident wavefront, respectively.
The length of the incident wavefront is denoted Lfront i . The air discharge that occurs
when passing through the opening yields a downstream compression wave, OCt, of
reduced amplitude (Cpt ) and an equal front length (Lfront t = Lfront i).

The process by which the reflected pressure wave is generated proves different
however. A difference in shape between the transmitted and reflected fronts could
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Figure 7. (x, t) diagram showing the tube opening.

nonetheless have been expected. Once the head of the incident front OCih reaches the
opening, air discharge occurs, which then creates an expansion wave that propagates
both downstream and upstream. This expansion wave lasts as long as the incident
compression front is propagating into the open region of the tube, i.e. until wavefront
OCit reaches the downstream part of the opening. The spatial extent of the expansion
front, called here the reflected front, is then

Lfront r = Lfront i + 2Lop. (11)

Based on this one-dimensional representation of the phenomenon, the major
parameters relevant to studying the effects of an opening on a compression wavefront
can be identified. Both the α coefficient and shape of the successive transmitted
and reflected pressure wavefronts are expected to be influenced by the following
parameters, namely:

(i) the relative surface area of the opening with respect to the tube cross-section,
Sop/Stube;

(ii) the amplitude of the incident compression wave, �pi; and
(iii) the relative length of the incident compression front with respect to the opening

length, Lfront i/Lop.
Section 6 of this paper is devoted to a close examination of the parameters. It

should be noted that if the opening lies close to the tube entrance, the multiple
reflections of compression and expansion waves between the opening and the tube
entrance will interact. The resultant compression wavefront measured downstream
from the opening will not be composed of separate fronts, as was the case in figure 6.

The next section will present the numerical computations performed to simulate
the transmission–reflection process that is taking place within the opening.
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4. Presentation of numerical computations
The aim of these numerical computations is to predict the amplitude and shape of

both the transmitted and reflected pressure fronts. The one-dimensional propagation
of pressure waves in the tube will be considered herein. Compression waves are
generated in the computational domain by imposing an input mass flux at the
inlet boundary. The shape of the incident compression wavefront can then be easily
monitored. Pressure wavefronts from our experiments can also be imposed as a
boundary condition. The entry of the slender body resulting in compression wave
generation will not be considered here as this constitutes a separate and complex
problem (Howe 1998; Ogawa & Fujii 1997). The multiple pressure wave reflections at
both the tube entrance and opening are not simulated, and neither are the effects of
wall friction and heat transfer. Air has been modelled as a perfect gas. Based on these
assumptions, Euler equations in their conservative form are used in conjunction with
a null source term along the tube, except in the opening region of the computation
domain:

∂U

∂t
+

∂f

∂x
= Q; U =




ρ

ρ · u
ρ · e


 ; f =




ρ · u
p + ρ · u2

(ρ · e + p) · u


 (12)

where e is the total energy per mass unit

e = 1
2
u2 +

p

(γ − 1)ρ
.

Q =0 everywhere except at the opening location, where

Q =




− φg

Sop�x

0

− φg

Sop�x
hg




. (13)

The index g relates to the fluid exiting the tube. Equation (13) is obtained by writing
the mass conservation and total enthalpy conservation within a one-dimensional
control volume with atmospheric surrounding conditions. The momentum equation
remains unchanged since the outgoing/ingoing flow velocity is presumed to be
oriented normal to the tube axis.

φg is the exiting mass flow rate, i.e. φg = CD · ρgvgSop, with vg deduced from the
conservation of total enthalpy through the opening (the Saint-Venant relation):

vg =

√
2γ

γ − 1

p

ρ

(
1 −

(
p0

p

)(1−1/γ ))
. (14)

CD is the contraction coefficient of the opening. The geometry of the opening is
constituted of one or more slits of the same type laid out around the perimeter of the
tube (see § 2.3). The value of CD is closely related to the specific geometry of the slit;
this value is adjusted from experimental data: a single experimental measurement has
been used to determine CD and this unique value is then employed in all computations
(see § 5). ρg is obtained by means of the following isentropic relation:

ρg

ρ
=

[
1 +

γ − 1

2

(
vg

c0

)2]−1/(γ −1)

. (15)
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The variable hg represents the total enthalpy per mass unit:

hg =
γ

γ − 1

p

ρ
. (16)

The second-order Mac-Cormack scheme will now be used. In order to attenuate
oscillations, the predictor–corrector sequence is inverted at each time step, as proposed
in Hoffmann & Chiang (1993). The CFL stability condition for this scheme is such
that

σ = max(|u| + c)
�x

�t
< 1. (17)

In the absence of a source term, σ is commonly set equal to 0.95. In the presence
of a source term however, stability is reached for σ = 1/4.

Inlet conditions are such that the velocity is subsonic, which imposes two separate
variables: velocity u, and density ρ. The density is deduced from the imposed velocity
value through application of the isentropic relation (15). Pressure at the inlet is then
computed using compatibility relations based on resolutions of the characteristics
curves (Hirsch 1990).

The extent of the computational domain is equal to the tube length used in the
experiments. The spatial discretization is chosen in a way that the incident pressure
front is represented by 200 points.

5. Validation of the numerical code
Pressure waves in the simulation propagate in a semi-infinite domain without

friction effects. Numerical tests were performed in order to check the steepening
of pressure wavefronts when propagating within the computational domain (i.e. no
opening is present). When pressure wavefronts from those experiments with the
highest amplitude (1600 Pa) are imposed at the inlet boundary of the computational
domain, they propagate along a length of 40 tube diameters with no increase in
pressure gradient.

In order to validate the numerical code, a compression wave measured under the
conditions of Test case 4 has been imposed as an inflow condition. Figure 8 presents
the computed and measured pressure signals at positions Xµphone 1 and Xµphone 2.
Figure 9 shows the normalized pressure gradients of the incident, transmitted and
reflected waves. The normalized pressure gradient is defined as (dp/dt)/�pmax, where
�pmax is the maximum amplitude of the wavefront. This normalized pressure gradient
proves to be convenient for comparing wavefronts with different amplitudes since in
all cases, ∫ tfront

0

(dp/dt)

�pmax

dt = 1.

In the present case, �pi = 1110 Pa, �pt = 620 Pa and �pr = −430 Pa.
It should be pointed out that in contrast with equation (7), the sum of �pt and

|�pr | is not equal to �pi; this is due to the fact that the reflected wave measured
at position Xµphone 1 has been affected by a weak, yet noticeable, positive pressure
wave originating from the tube entrance. This pressure wave, which follows the
initial compression wave due to the body nose entry, results from friction effects
along the moving body wall. This feature can be seen on figure 8 (dashed line). At
position Xµphone 1 therefore, competition between the expansion wave (the reflected
wave) stemming from the opening and the compression wave stemming from the
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tube entrance is present. Simulations conducted with the primary compression wave
alone (without the pressure rise due to friction effects on body walls) have confirmed
equation (7).

The value of the contraction coefficient CD is adjusted so that the amplitude of the
numerical transmitted wavefront matches the experimental wavefront for Test case 4
and �pi = 1200 Pa: CD = 0.84 ± 0.02. This value is held constant for all simulations
performed in this study.

The overall level of agreement between the experimental and numerical pressure
fronts is quite good. Simulations and experiments predict that the shape of the
reflected and transmitted fronts is identical to the incident front.

No attempt has yet been made to simulate friction effects occurring as the pressure
wavefront propagates in the tube. This task is not trivial in that an unsteady
friction coefficient has to be taken into account, thereby yielding a complicated
model (Schultz & Sockel 1988; Vardy & Brown 2002). This deformation process is
merely a second-order phenomenon for the problem considered and therefore does
not alter the study’s conclusions.

6. Parametric study
In this section, we will examine the individual influences of the parameters identified

in § 3.

6.1. Influence of the relative surface area of the opening on both α and
the shape of the transmitted and reflected wavefronts

For this section, the incident pressure wave amplitude, �pi , has been set at 1200 Pa
and the relative length of the incident wavefront Lfront/Lop lies within the range
Lfront/Lop � 1. This condition has been obtained in the experiments for a moving
body speed of 43 m s−1. Test cases 1 to 8 are performed for this part of the work.
Figure 10 presents both the experimental and numerical data of the trend in α vs. the
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Figure 9. Normalized pressure gradient of the (a) incident, (b) transmitted
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Figure 10. Evolution of transmission coefficient α with the relative surface area of the
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relative opening surface area with respect to the tube cross-section. The agreement
between the two data sets is rather good. The experimental and numerical points
are reported along with the best curve fit, which is an exponential function with a
proportionality coefficient equal to −6.7 (experimental) and −5.3 (numerical), and
a regression coefficient as high as 0.996 (experimental) and 0.992 (numerical). An
exponential decrease in α with opening surface area is obtained both experimentally
and numerically, with the decrease being slightly smaller in the computations. Note
that a small opening surface area, Sop/Stube ≈ 1/4 (Test case 8), induces a rather low
transmission coefficient, α ≈ 0.2.

For these simulations, the shape of the three wavefronts (incident, transmitted and
reflected) has been closely examined using the representation of normalized pressure
gradients. No influence of the relative surface area on the shape of the reflected and
transmitted fronts has been observed.

6.2. Influence of the incident compression wave amplitude on both α and
the shape of the transmitted and reflected wavefronts

For this section, the relative length of the incident wavefront Lfront/Lop still lies
within the range Lfront/Lop � 1. The amplitude of the incident compression wave is
varied from 400 Pa to 1600 Pa. Figure 11 presents the results obtained under these
conditions for three different relative opening surface areas. For a given opening, the
transmission coefficient increases with the incident compression wave amplitude; this
evolution is logarithmic. Simulations are well-suited to predicting the influence of the
incident compression wave amplitude on the transmission coefficient.

As far as the shape of the reflected and transmitted fronts is concerned, no influence
of this amplitude has been observed.

6.3. Influence of the relative incident wavefront length on both α and
the shape of the transmitted and reflected wavefronts

For this section, the relative surface area of the opening is set at 0.1 and the amplitude
of the incident compression front at 1670 Pa. Lfront i/Lop is made to vary from 100
to 0.05. The results presented here have only been based on simulations, since the
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experimental data are restricted to the case where Lfront i/Lop � 1. The shape of the
incident front has been chosen as linear, i.e. dp/dt is constant. To derive results
with Lfront i/Lop � 1, it was decided to hold the length of the incident front fixed
(Lfront i = 0.88 m) and to increase the opening length. The computational domain is
considerably extended in order to record the entire reflected pressure front at Xµ-phone 1.
As an example, for Lfront i/Lop = 0.05, Xµ-phone 1 = 20 m, Lop =17.6 m, Xµ-phone 2 = 40 m,
Lfront r = 36 m and Ltube = 72 m.

Figure 12 displays the influence of Lfront i/Lop on the transmitted front. For
Lfront i/Lop � 1, the amplitude and shape of the transmitted front remain constant.
When Lfront i/Lop is of the order of 1, the amplitude of the transmitted front, and
therefore α, decreases. This decrease lasts until Lfront i/Lop � 1; this result is due to the
existence of a compression wave that occurs when the reflected wave (wave ODr on
the sketch in figure 7) reaches the beginning of the opening (at position Xop). Part of
this pressure wave reflects back as a compression wave at the end of the tube (wave
OCt2 on the sketch in figure 7). This wave is only noticeable on the pressure signal at
position Xµ-phone 2 when the length of the incident front reaches a value comparable
to the opening length. For Lfront i/Lop � 1, figure 12 shows that the transmitted front
tends to steepen. As noted above, for Lfront i/Lop = 0.05, the transmitted front is
actually recorded at Xµ-phone 2 = 40 m = 900Dtube. Under these conditions, the weak
numerical steepening of the compression wavefront due to nonlinear effects becomes
significant.

Figure 13 presents the shape of the reflected fronts using the normalized pressure
gradient depiction. The results obtained for Lfront i/Lop vary from 100 to 0.33. As
mentioned in § 3, the length of the reflected front increases linearly with Lop. Equation
(11) is confirmed by the series of simulations. For Lfront i/Lop < 1, the reflected front
becomes linear (as dp/dt is constant) with the incident front. This section has shown
that at the limit Lfront i/Lop � 1, which corresponds to the actual opening encountered
in railway tunnels, the shape of the transmitted front is identical to the incident front.
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7. Linear analysis
Section 6 focuses primarily on the transmission process for a pressure wavefront

propagating into a partially open portion of a tube. The results presented have
been based on experiments and simulations conducted using Euler equations. This
work provided us with greater understanding of the basic phenomena involved in
problems of this type. The idea was then put forward that it was possible to predict



286 B. Auvity and M. Bellenoue

p

x

Opening

∆pi

∆pr

∆pt

(a)

u

x

Opening

ur

ui ut

(b)

Figure 14. Sketch of the distribution of (a) pressure and (b) velocity along the tube in the
region of the opening.

the transmission coefficient using both a linear acoustic approximation and the
mass conservation equation. The transmission coefficient α depends mainly on two
variables: the relative surface area of the opening Sop/Stube, and the amplitude of
the incident compression wave �pi . Let us now consider, for any value of the ratio
Lfront i/Lop, the time it takes for the incident pressure wavefront to completely pass
the opening region, i.e. once the transmitted and reflected fronts have become fully
developed. Figures 14(a) and 14(b) show a sketch of the spatial distribution of both
pressure and velocity along the tube at that particular time. The control volume
considered herein is the opening region. We can then write the mass conservation
equation for this volume with one ingoing flow and two outgoing flows. The inflow
(on the left side of figure 14) has a velocity of ui + ur . As seen on figure 14(a), the
density in the opening is equal to the density behind the transmitted front ρt .

Using the notation introduced in § 4, the mass conservation equation is expressed
as follows:

ρt (ui + ur )Stube = CDρgvgSop + ρtutStube. (18)

Since the ratio �p/p0 is of the order of 1–2 %, a first-order acoustic approximation
may be developed. ρ is thus assumed to be constant. Using equation (7) and the
linear acoustic approximation for determining the velocity behind a pressure front of
amplitude �p,

u =
�p

ρ0c0

(19)

it then becomes possible to write

ui = ut + ur. (20)

Hence

ui + ur = 2ui − ut . (21)
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The Saint-Venant relation developed as a first-order expression leads to Bernoulli’s
equation:

vg =

√
2�pt

ρ0

=
√

2c0ut . (22)

Equation (18) is then simplified to give

(2ui − ut )Stube = CD

√
2c0utSop + utStube. (23)

By noting that α =�pt/�pi = ut/ui , equation (23) becomes

α + CD

√
ρ0

2�pi

Sop

Stube

c0

√
α − 1 = 0. (24)

Equation (24) is a second-order equation; α, which is a positive solution to this
equation, can thus be written as

α =
1

4

[
−CDc0

Sop

Stube

√
ρ0

2�pi

+

√
C2

Dc2
0

(
Sop

Stube

)2
ρ0

2�pi

+ 4

]2

. (25)

This expression conveys an explicit dependence of α on both �pi and Sop/Stube.
Equation (25) allows one curve to be added to figure 10 (i.e. α versus Sop/Stube for
a fixed �pi) and another curve to figure 11 (i.e. α versus �pi for different Sop/Stube

values). The three approaches (experimental, numerical and analytical) used in this
study are all found to be consistent with one another.

The present linear analysis has been compared with the analytical results obtained
in Howe et al. (2003), as validated by reduced-scale measurements. Two cases are
discussed in this paper. According to the first case, the train speed reaches 97.8 m s−1,
the train/tunnel blockage ratio is 0.2 and the relative surface area of the opening is
0.102 (the opening is rectangular in shape with an aspect ratio of 2). Without any
opening, the compression wave amplitude generated by train entry would be equal to
�pi = 3100 Pa, as predicted with Ozawa’s formulation. Equation (25) predicts α = 0.67
with CD = 0.8 and α = 0.71 with CD =0.7. A value of around 0.7 can be read from
figure 6. For the second case, the train speed is 96.7 m s−1, the train/tunnel blockage
ratio 0.2 and the relative surface area of the opening 0.051; in this case, �pi =3000 Pa
and equation (25) predicts α = 0.82 with CD = 0.8 and α =0.84 with CD = 0.7. A value
of around 0.85 can now be read from figure 7.

8. Conclusion
Introducing an opening along a tube with a limited cross-section (Sop/Stube < 1/4)

induces a considerable change in the compression wavefront produced by a slender
body entry; it splits the original compression front into a series of smaller pressure
steps. The process by which this front is formed results from successive pressure waves
passing through the opening as well as their reflection between the tube entrance and
the opening. Our analysis has proved that the amplitude of these successive pressure
steps is governed by a mathematical series (equation (10)). The main parameter of
this equation is what we have defined herein as the transmission coefficient α of the
opening. The precise estimation of the resultant pressure front downstream of the
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opening can then be reduced to the generic problem of a pressure wavefront passing
through an opening.

A numerical and experimental study has focused on the transmission–reflection
process that takes place when a pressure wavefront passes through an opening. Three
major parameters have been identified for this problem: the relative opening surface
area with respect to tube cross-section, the amplitude of the incident compression
wave, and the relative spatial length of the compression wave with respect to the
opening length.

For practical reasons, our experiments have been limited to the case where the length
of the pressure front is large compared to the opening length. The numerical code then
allows simulation of cases in which the length of the pressure front is considerably
smaller than the opening length. The experiments have been satisfactorily reproduced
by the computations. Both experiments and simulations show that the transmission
coefficient through the opening decreases exponentially with the relative opening
surface area and that as the incident front amplitude increases, the transmission
coefficient becomes higher as well. The shape of the reflected and transmitted pressure
fronts is similar to that of the incident front as long as the length of the incident front
is large compared to the opening length. A linear analysis of the problem based on
both the linear acoustic approximation and the continuity equation has demonstrated
the ability to predict, in a simple manner, the transmission coefficient.

The hybrid numerical/experimental analysis developed in this paper results in
a rather simple tool for predicting the effect of an opening on compression wave
propagation. The transmission coefficient through the opening can indeed be estimated
very accurately using the linear analysis developed in § 7. With equation (10), the
amplitude of the successive pressure steps propagating downstream of the opening
into the tunnel can now be accurately estimated (once the compression wave amplitude
that would be formed without an opening, as predicted for example with Ozawa’s
formulation, is known). When a train enters a tunnel, the length of the compression
wave is large in comparison not only with the tunnel diameter, but also with practical
perforations that could be made along the tunnel. The present experiments and
computations have thus indicated that the shape of the pressure fronts generated
by the opening is identical in normalized representations. This prediction tool is
consistent with the analytical formulation proposed by Howe et al. (2003) yet remains
somewhat simpler to use.

The present paper leads to important conclusions for the design of openings in many
countermeasures envisaged for the train/tunnel entry problem (perforated hood, use
of side branches, etc.). First, it reveals that the opening surface area must be limited: a
relative opening surface area of 0.25 leads to a transmission coefficient of about 0.25.
Full-scale tests (Ozawa & Maeda 1988) have confirmed these conclusions. Secondly,
when the body nose reaches the opening, it creates an additional pressure wave with
an amplitude on the order of (1 − α)Cpi. This effect may prove to be sizable for a
large opening surface. It therefore appears that the best opening surface area for the
problem investigated would be one in which the transmission coefficient equals 0.5,
i.e. Sop/Stube ≈ 0.12 for high-speed train tunnels.

Now that the physical phenomena involved in the transmission–reflection process,
with a thin opening directly connected to the atmosphere, are believed to be well-
understood, more complex configurations offering relevant applications for high-
speed railway tunnel design may be undertaken; such configurations would include
openings connected to side-branched pipes of varying lengths ending either in the
open atmosphere or within an adjacent tunnel.
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